
Summary 16 – Arrays and ArrayList’s

 What is this?

An array is a collection of data organized by a single name. One

refers to the elements of the collection by using indices (aka
subscripts).

An ArrayList is also a collection of data organized by a single name.

ArrayList is a class, hence has methods, can be extended, and so

forth. They also resize themselves as needed. Because ArrayList’s

are objects and because they resize themselves, they are generally

more convenient that the more primitive arrays.

 Examples

1. Declaring an array or ArrayList or (more generically) List.

 double[] data;

 Employee[] employees;

 ArrayList<Double> scores;

 ArrayList<Student> students;

 List<Double> scores;

 List<Student> students;

2. Allocating space for an array or ArrayList. Assuming the

declarations above:

 data = new double[50];

 employees = new Employee[numberOfEmployees];

 scores = new ArrayList<Double>();

 students = new ArrayList<Student>();

 // You also can declare and allocate space

 // in a single statement:

 double[] moreData = new double[100];

 List<Student> moreStudents

 = new ArrayList<Student>();

 // Note the use of interface-type

 // for the above declaration.

3. Getting (accessing) elements in an array or ArrayList. Examples

(assuming declarations above, and also see examples that follow):

 ... data[4] ...

 ... employees[k] ...

 ... scores.get(4) ...

 ... students.get(k) ...

4. Setting (mutating) elements in an array or ArrayList. Examples

(assuming declarations above, and also see examples that follow):

 data[4] = valueFromFile;

 employees[k] = new Employee(...);

 scores.set(4, scoreFromFile);

 students.set(k, new Student(...)) ...

 // You can also can add elements to the end

 // of an ArrayList, and more:

 students.add(new Student(...));

 students.remove(j); // Remove element at index j,

 // shifting the elements behind it

5. Initializing all elements of an array or ArrayList, using old-style

loops:

 Dog[] dogs = new Dog[numberOfDogs];

 for (int k = 0; k < dogs.length; ++k) {

 dogs[k] = new Dog(...);

 }

 List<Cat> cats = new ArrayList<Cat>();

 for (int k = 0; k < numberOfCats; ++k) {

 cats.add(new Cat(...));

 }

6. Counting array or ArrayList elements that satisfy a given property,

using old-style loops:

 int count = 0;

 for (int k = 0; k < dogs.length; ++k) {

 if (... dogs[k] ...) {

 ++ count;

 }

 }

 int otherCount = 0;

 for (int k = 0; k < cats.size(); ++k) {

 if (... cats.get(k) ...) {

 ++ otherCount;

 }

 }

7. Summing array or ArrayList elements, using NEW-style loops:

 double totalWeight = 0;

 for (Dog dog : dogs) {

 totalWeight += dog.weight();

 }

 int totalAge = 0;

 for (Cat cat : cats) {

 totalAge += cat.age();

 }

Note: you can NOT use the enhanced for loop to modify an element of

an array or ArrayList.

8. The “histogram loop pattern”:

a. Declare an array or ArrayList that will hold histogram values

0 .. n, where events are numbered and n is the biggest event

that can occur.

b. Initialize all elements of the histogram to 0.

c. Repeatedly:

i. Get one event (call it m) from which the histogram is

to be built.

ii. Increment the histogram count at index m.

The array or ArrayList now holds the desired histogram.

9. Two (or more) dimensional arrays or ArrayList's, as in these

examples:

 Integer[m][n] matrix = new Integer[m][n];

 for (int j = 0; j < matrix.length; ++j) {

 for (int k = 0; k < matrix[j].length; ++k) {

 matrix[j][k] = ...

 }

 }

 List<List<Integer>> matrix =

 new ArrayList<List<Integer>>();

 for (int j = 0; j < m; ++j) {

 matrix.add(new ArrayList<Integer>());

 for (int k = 0; k < n; ++k) {

 matrix.get(j).add(...);

 }

 }

The above examples show why arrays are often preferable to ArrayList's

when two or more dimensions are required.

 For further study:

o Chapter 7 of Big Java

o The notes on:

 Arrays and ArrayList’s

(10 ArraysAndArrayLists)

 Wrapper classes and autoboxing

(10 ArraysAndArrayLists)

 Two-dimensional arrays

(11 TwoDArrays)

o The Arrays and Collections classes

o This summary’s author: David Mutchler

../Slides/10%20ArraysAndLists.pdf
../Slides/10%20ArraysAndLists.pdf
../Slides/11%20TwoDArrays.pdf
http://www.j2ee.me/javase/6/docs/api/java/util/Arrays.html
http://java.sun.com/javase/6/docs/api/java/util/Collections.html

